Logo Generation of hkl and 2q

Output from Program DRAGON-WWW


C-CENTRED Orthorhombic Unit Cell

Cell parameters
a (Å) b (Å) c (Å) a (°) b (°) g (°) V3)
6.00000 7.50000 8.50000 90.000 90.000 90.000 382.5

Wavelength = 1.54056 Å     2q Maximum = 120.000°     Zero Error = 0.000°     Minimum d-spacing = 0.88944 Å

Space group is Cmmm     Lattice = C     1st  symbol = m     2nd  symbol = m     3rd  symbol = m     Crystal class is m m m

Reflection conditions are     hkl: h + k = 2n   

Number of generated reflections is 189     Number output to browser is 189

hk lJ d (Å) 2q (°) hk lJ d (Å) 2q (°) hk lJ d (Å) 2q (°)
0 0 1 2 8.5000 10.399 4 0 3 4 1.3257 71.048 1 7 2 8 1.0237 97.607
1 1 0 4 4.6852 18.926 0 2 6 4 1.3253 71.075 0 2 8 4 1.0223 97.790
0 0 2 2 4.2500 20.884 4 2 2 8 1.3235 71.185 0 4 7 4 1.0192 98.183
1 1 1 8 4.1032 21.640 1 5 3 8 1.2945 73.034 1 5 6 8 1.0151 98.722
0 2 0 2 3.7500 23.707 2 0 6 4 1.2810 73.926 2 6 4 8 1.0140 98.865
0 2 1 4 3.4309 25.948 3 1 5 8 1.2764 74.239 5 3 3 8 1.0107 99.309
1 1 2 8 3.1478 28.328 2 4 4 8 1.2731 74.465 0 6 5 4 1.0071 99.792
2 0 0 2 3.0000 29.756 0 4 5 4 1.2594 75.413 2 0 8 4 1.0015 100.545
0 0 3 2 2.8333 31.550 3 3 4 8 1.2584 75.482 6 0 0 2 1.0000 100.758
2 0 1 4 2.8290 31.600 0 6 0 2 1.2500 76.082 4 2 6 8 0.9932 101.716
0 2 2 4 2.8119 31.797 4 2 3 8 1.2499 76.090 6 0 1 4 0.9932 101.718
2 0 2 4 2.4509 36.635 0 6 1 4 1.2367 77.049 1 7 3 8 0.9885 102.386
1 1 3 8 2.4245 37.049 4 0 4 4 1.2255 77.889 3 5 5 8 0.9804 103.573
2 2 0 4 2.3426 38.394 0 0 7 2 1.2143 78.743 6 0 2 4 0.9734 104.617
1 3 0 4 2.3077 38.998 2 2 6 8 1.2122 78.902 5 1 5 8 0.9721 104.820
0 2 3 4 2.2606 39.844 1 3 6 8 1.2073 79.287 2 2 8 8 0.9676 105.509
2 2 1 8 2.2584 39.884 1 5 4 8 1.2007 79.814 6 2 0 4 0.9662 105.727
1 3 1 8 2.2271 40.470 3 5 0 4 1.2000 79.867 1 3 8 8 0.9651 105.902
0 0 4 2 2.1250 42.506 0 6 2 4 1.1992 79.931 2 4 7 8 0.9650 105.914
2 0 3 4 2.0599 43.918 3 5 1 8 1.1882 80.822 4 4 5 8 0.9645 105.995
2 2 2 8 2.0516 44.105 5 1 0 4 1.1849 81.093 5 3 4 8 0.9641 106.065
1 3 2 8 2.0280 44.645 1 1 7 8 1.1754 81.886 4 6 0 4 0.9603 106.671
1 1 4 8 1.9353 46.910 5 1 1 8 1.1736 82.044 6 2 1 8 0.9601 106.707
3 1 0 4 1.9325 46.981 4 4 0 4 1.1713 82.238 3 3 7 8 0.9586 106.937
3 1 1 8 1.8844 48.255 4 2 4 8 1.1648 82.795 2 6 5 8 0.9547 107.573
0 4 0 2 1.8750 48.512 2 4 5 8 1.1612 83.108 4 6 1 8 0.9542 107.656
0 2 4 4 1.8488 49.245 4 4 1 8 1.1603 83.187 1 7 4 8 0.9448 109.237
0 4 1 4 1.8310 49.757 0 2 7 4 1.1552 83.637 0 0 9 2 0.9444 109.292
2 2 3 8 1.8054 50.510 3 5 2 8 1.1548 83.671 3 7 0 4 0.9444 109.292
1 3 3 8 1.7893 50.998 2 6 0 4 1.1538 83.761 4 0 7 4 0.9438 109.402
3 1 2 8 1.7592 51.936 3 3 5 8 1.1501 84.096 6 0 3 4 0.9430 109.541
2 0 4 4 1.7341 52.745 0 6 3 4 1.1436 84.680 6 2 2 8 0.9422 109.679
0 4 2 4 1.7155 53.362 2 6 1 8 1.1434 84.706 3 7 1 8 0.9387 110.292
0 0 5 2 1.7000 53.886 3 1 6 8 1.1425 84.781 0 8 0 2 0.9375 110.497
1 1 5 8 1.5981 57.634 5 1 2 8 1.1414 84.886 0 6 6 4 0.9373 110.533
3 1 3 8 1.5965 57.696 0 4 6 4 1.1303 85.918 5 5 0 4 0.9370 110.578
2 4 0 4 1.5900 57.953 4 4 2 8 1.1292 86.023 4 6 2 8 0.9367 110.644
2 2 4 8 1.5739 58.602 2 0 7 4 1.1256 86.368 1 5 7 8 0.9323 111.418
0 4 3 4 1.5636 59.027 4 0 5 4 1.1248 86.446 0 8 1 4 0.9318 111.505
1 3 4 8 1.5632 59.044 2 6 2 8 1.1135 87.536 5 5 1 8 0.9314 111.586
2 4 1 8 1.5629 59.057 1 5 5 8 1.1055 88.337 3 1 8 8 0.9311 111.649
3 3 0 4 1.5617 59.105 3 5 3 8 1.1050 88.389 1 1 9 8 0.9258 112.609
0 2 5 4 1.5483 59.668 5 1 3 8 1.0932 89.598 0 4 8 4 0.9244 112.874
3 3 1 8 1.5360 60.195 4 4 3 8 1.0825 90.731 3 7 2 8 0.9220 113.333
4 0 0 2 1.5000 61.797 5 3 0 4 1.0818 90.799 0 2 9 4 0.9158 114.504
2 4 2 8 1.4892 62.296 2 2 7 8 1.0781 91.205 3 5 6 8 0.9157 114.541
2 0 5 4 1.4790 62.772 0 6 4 4 1.0774 91.275 0 8 2 4 0.9155 114.573
4 0 1 4 1.4772 62.860 4 2 5 8 1.0773 91.284 4 2 7 8 0.9153 114.619
3 3 2 8 1.4659 63.399 1 3 7 8 1.0746 91.583 5 5 2 8 0.9151 114.656
1 5 0 4 1.4552 63.920 5 3 1 8 1.0732 91.740 6 2 3 8 0.9145 114.763
1 5 1 8 1.4343 64.963 2 6 3 8 1.0686 92.243 5 3 5 8 0.9127 115.122
3 1 4 8 1.4297 65.200 0 0 8 2 1.0625 92.933 4 6 3 8 0.9095 115.766
0 0 6 2 1.4167 65.875 2 4 6 8 1.0577 93.478 5 1 6 8 0.9089 115.877
4 0 2 4 1.4145 65.990 1 7 0 4 1.0547 93.823 6 0 4 4 0.9048 116.709
0 4 4 4 1.4059 66.442 3 3 6 8 1.0493 94.463 4 4 6 8 0.9027 117.144
4 2 0 4 1.3927 67.157 5 3 2 8 1.0484 94.568 2 0 9 4 0.9009 117.531
2 4 3 8 1.3866 67.493 1 7 1 8 1.0467 94.767 1 7 5 8 0.8963 118.508
1 5 2 8 1.3767 68.042 3 5 4 8 1.0449 94.983 3 7 3 8 0.8960 118.568
2 2 5 8 1.3759 68.090 1 1 8 8 1.0362 96.040 2 8 0 4 0.8948 118.817
4 2 1 8 1.3744 68.174 5 1 4 8 1.0349 96.198 2 6 6 8 0.8946 118.855
1 3 5 8 1.3687 68.496 4 0 6 4 1.0299 96.816 0 8 3 4 0.8900 119.866
3 3 3 8 1.3677 68.552 3 1 7 8 1.0282 97.040 2 8 1 8 0.8899 119.896
1 1 6 8 1.3560 69.227 4 4 4 8 1.0258 97.339 5 5 3 8 0.8897 119.953


Back (or use back button on browser to keep contents of form intact)
© Copyright 1998-2006.  Birkbeck College, University of London. Author(s): Jeremy Karl Cockcroft